Serveur d'exploration sur la pourriture ligneuse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes.

Identifieur interne : 000546 ( Main/Exploration ); précédent : 000545; suivant : 000547

Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes.

Auteurs : Tuulia Mali [Finlande] ; Jaana Kuuskeri [Finlande] ; Firoz Shah [Finlande] ; Taina Kristina Lundell [Finlande]

Source :

RBID : pubmed:28953947

Descripteurs français

English descriptors

Abstract

Fomitopsis pinicola is a species of Polyporales frequently encountered in Nordic temperate and boreal forests. In nature, the fungus causes destructive brown rot in wood, colonizing tree trunks often occupied by other Basidiomycota species. We mimicked these species-species interactions by introducing F. pinicola to five white rot species, all common saprotrophs of Norway spruce. Hyphal interactions and mycelial growth in various combinations were recorded, while activities of lignocellulose-acting CAZymes and oxidoreductases were followed in co-cultures on two different carbon-source media. Of the species, Phlebia radiata and Trichaptum abietinum were the strongest producers of lignin-modifying oxidoreductases (laccase, manganese peroxidase) when evaluated alone, as well as in co-cultures, on the two different growth media (low-nitrogen liquid medium containing ground coniferous wood, and malt extract broth). F. pinicola was an outstanding producer of oxalic acid (up to 61 mM), whereas presence of P. radiata prevented acidification of the growth environment in the liquid malt-extract cultures. When enzyme profiles of the species combinations were clustered, time-dependent changes were observed on wood-supplemented medium during the eight weeks of growth. End-point acidity and production of mycelium, oxalic acid and oxidoreductase activities, in turn clustered the fungal combinations into three distinct functional groups, determined by the presence of F. pinicola and P. radiata, by principal component analysis. Our findings indicate that combinations of wood-decay fungi have dramatic dynamic effects on the production of lignocellulose-active enzymes, which may lead to divergent degradative processes of dead wood and forest litter.

DOI: 10.1371/journal.pone.0185171
PubMed: 28953947
PubMed Central: PMC5617175


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes.</title>
<author>
<name sortKey="Mali, Tuulia" sort="Mali, Tuulia" uniqKey="Mali T" first="Tuulia" last="Mali">Tuulia Mali</name>
<affiliation wicri:level="4">
<nlm:affiliation>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuuskeri, Jaana" sort="Kuuskeri, Jaana" uniqKey="Kuuskeri J" first="Jaana" last="Kuuskeri">Jaana Kuuskeri</name>
<affiliation wicri:level="4">
<nlm:affiliation>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shah, Firoz" sort="Shah, Firoz" uniqKey="Shah F" first="Firoz" last="Shah">Firoz Shah</name>
<affiliation wicri:level="4">
<nlm:affiliation>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lundell, Taina Kristina" sort="Lundell, Taina Kristina" uniqKey="Lundell T" first="Taina Kristina" last="Lundell">Taina Kristina Lundell</name>
<affiliation wicri:level="4">
<nlm:affiliation>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28953947</idno>
<idno type="pmid">28953947</idno>
<idno type="doi">10.1371/journal.pone.0185171</idno>
<idno type="pmc">PMC5617175</idno>
<idno type="wicri:Area/Main/Corpus">000513</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000513</idno>
<idno type="wicri:Area/Main/Curation">000513</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000513</idno>
<idno type="wicri:Area/Main/Exploration">000513</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes.</title>
<author>
<name sortKey="Mali, Tuulia" sort="Mali, Tuulia" uniqKey="Mali T" first="Tuulia" last="Mali">Tuulia Mali</name>
<affiliation wicri:level="4">
<nlm:affiliation>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuuskeri, Jaana" sort="Kuuskeri, Jaana" uniqKey="Kuuskeri J" first="Jaana" last="Kuuskeri">Jaana Kuuskeri</name>
<affiliation wicri:level="4">
<nlm:affiliation>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shah, Firoz" sort="Shah, Firoz" uniqKey="Shah F" first="Firoz" last="Shah">Firoz Shah</name>
<affiliation wicri:level="4">
<nlm:affiliation>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lundell, Taina Kristina" sort="Lundell, Taina Kristina" uniqKey="Lundell T" first="Taina Kristina" last="Lundell">Taina Kristina Lundell</name>
<affiliation wicri:level="4">
<nlm:affiliation>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (enzymology)</term>
<term>Basidiomycota (growth & development)</term>
<term>Basidiomycota (metabolism)</term>
<term>Hyphae (growth & development)</term>
<term>Oxalic Acid (metabolism)</term>
<term>Tracheophyta (microbiology)</term>
<term>Wood (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide oxalique (métabolisme)</term>
<term>Basidiomycota (croissance et développement)</term>
<term>Basidiomycota (enzymologie)</term>
<term>Basidiomycota (métabolisme)</term>
<term>Bois (microbiologie)</term>
<term>Hyphae (croissance et développement)</term>
<term>Tracheobionta (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oxalic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Basidiomycota</term>
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Basidiomycota</term>
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Bois</term>
<term>Tracheobionta</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Tracheophyta</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide oxalique</term>
<term>Basidiomycota</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fomitopsis pinicola is a species of Polyporales frequently encountered in Nordic temperate and boreal forests. In nature, the fungus causes destructive brown rot in wood, colonizing tree trunks often occupied by other Basidiomycota species. We mimicked these species-species interactions by introducing F. pinicola to five white rot species, all common saprotrophs of Norway spruce. Hyphal interactions and mycelial growth in various combinations were recorded, while activities of lignocellulose-acting CAZymes and oxidoreductases were followed in co-cultures on two different carbon-source media. Of the species, Phlebia radiata and Trichaptum abietinum were the strongest producers of lignin-modifying oxidoreductases (laccase, manganese peroxidase) when evaluated alone, as well as in co-cultures, on the two different growth media (low-nitrogen liquid medium containing ground coniferous wood, and malt extract broth). F. pinicola was an outstanding producer of oxalic acid (up to 61 mM), whereas presence of P. radiata prevented acidification of the growth environment in the liquid malt-extract cultures. When enzyme profiles of the species combinations were clustered, time-dependent changes were observed on wood-supplemented medium during the eight weeks of growth. End-point acidity and production of mycelium, oxalic acid and oxidoreductase activities, in turn clustered the fungal combinations into three distinct functional groups, determined by the presence of F. pinicola and P. radiata, by principal component analysis. Our findings indicate that combinations of wood-decay fungi have dramatic dynamic effects on the production of lignocellulose-active enzymes, which may lead to divergent degradative processes of dead wood and forest litter.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28953947</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes.</ArticleTitle>
<Pagination>
<MedlinePgn>e0185171</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0185171</ELocationID>
<Abstract>
<AbstractText>Fomitopsis pinicola is a species of Polyporales frequently encountered in Nordic temperate and boreal forests. In nature, the fungus causes destructive brown rot in wood, colonizing tree trunks often occupied by other Basidiomycota species. We mimicked these species-species interactions by introducing F. pinicola to five white rot species, all common saprotrophs of Norway spruce. Hyphal interactions and mycelial growth in various combinations were recorded, while activities of lignocellulose-acting CAZymes and oxidoreductases were followed in co-cultures on two different carbon-source media. Of the species, Phlebia radiata and Trichaptum abietinum were the strongest producers of lignin-modifying oxidoreductases (laccase, manganese peroxidase) when evaluated alone, as well as in co-cultures, on the two different growth media (low-nitrogen liquid medium containing ground coniferous wood, and malt extract broth). F. pinicola was an outstanding producer of oxalic acid (up to 61 mM), whereas presence of P. radiata prevented acidification of the growth environment in the liquid malt-extract cultures. When enzyme profiles of the species combinations were clustered, time-dependent changes were observed on wood-supplemented medium during the eight weeks of growth. End-point acidity and production of mycelium, oxalic acid and oxidoreductase activities, in turn clustered the fungal combinations into three distinct functional groups, determined by the presence of F. pinicola and P. radiata, by principal component analysis. Our findings indicate that combinations of wood-decay fungi have dramatic dynamic effects on the production of lignocellulose-active enzymes, which may lead to divergent degradative processes of dead wood and forest litter.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mali</LastName>
<ForeName>Tuulia</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuuskeri</LastName>
<ForeName>Jaana</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shah</LastName>
<ForeName>Firoz</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lundell</LastName>
<ForeName>Taina Kristina</ForeName>
<Initials>TK</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3899-1658</Identifier>
<AffiliationInfo>
<Affiliation>Microbiology and Biotechnology, Department of Food and Environmental Sciences, Viikki Campus, University of Helsinki, Helsinki, Finland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9E7R5L6H31</RegistryNumber>
<NameOfSubstance UI="D019815">Oxalic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019815" MajorTopicYN="N">Oxalic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064028" MajorTopicYN="N">Tracheophyta</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28953947</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0185171</ArticleId>
<ArticleId IdType="pii">PONE-D-17-25647</ArticleId>
<ArticleId IdType="pmc">PMC5617175</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol Biofuels. 2016 Sep 05;9(1):192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27602055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Nov-Dec;105(6):1428-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23921235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 5;333(6043):762-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Jul;87(3):871-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20495915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2014 Dec;78(4):614-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2011 Apr;38(4):541-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20711629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Apr;33(4):959-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26659563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2010 Jun;13(6):675-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20412280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2015 May;91(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25873458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 Nov;72 :91-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24394946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2004 Nov 1;50(3):245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 2010 Feb;50(1):5-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20175122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2000 Mar 1;31(3):185-194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10719199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2015 Oct 19;15:217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26482661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Jul 18;348(3):291-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8034057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2010 Sep;91(9):2514-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20957941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Jul;57(7):1980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Aug;81(2):494-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22458543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2009 Jul;58(1):98-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18982382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Jun;47(6):562-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20371297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Nov-Dec;105(6):1412-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 May;42(5):403-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2016 Jun;18(6):1954-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26626102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Jul;71(7):3608-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16000768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2014 Sep;70:583-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25083593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Mar;79(5):1523-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23263965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Jul;87(3):801-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20464388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2000 Dec;54(6):819-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2017 Mar 1;41(2):109-130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27856492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2017 Feb;225:254-261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27898315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Mar 5;446(1):49-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10100613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9923-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24958869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Nov-Dec;105(6):1350-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
</country>
<region>
<li>Uusimaa</li>
</region>
<settlement>
<li>Helsinki</li>
</settlement>
<orgName>
<li>Université d'Helsinki</li>
</orgName>
</list>
<tree>
<country name="Finlande">
<region name="Uusimaa">
<name sortKey="Mali, Tuulia" sort="Mali, Tuulia" uniqKey="Mali T" first="Tuulia" last="Mali">Tuulia Mali</name>
</region>
<name sortKey="Kuuskeri, Jaana" sort="Kuuskeri, Jaana" uniqKey="Kuuskeri J" first="Jaana" last="Kuuskeri">Jaana Kuuskeri</name>
<name sortKey="Lundell, Taina Kristina" sort="Lundell, Taina Kristina" uniqKey="Lundell T" first="Taina Kristina" last="Lundell">Taina Kristina Lundell</name>
<name sortKey="Shah, Firoz" sort="Shah, Firoz" uniqKey="Shah F" first="Firoz" last="Shah">Firoz Shah</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WhiteRotV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000546 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000546 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WhiteRotV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28953947
   |texte=   Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28953947" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WhiteRotV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 14:47:15 2020. Site generation: Tue Nov 17 14:50:18 2020